网站地图 原创论文网,覆盖经济,法律,医学,建筑,艺术等800余专业,提供60万篇论文资料免费参考
主要服务:论文发表、论文修改服务,覆盖专业有:经济、法律、体育、建筑、土木、管理、英语、艺术、计算机、生物、通讯、社会、文学、农业、企业

蚊虫肠道菌群的多样性和影响因素

来源:原创论文网 添加时间:2021-01-13

  摘    要: 蚊虫是一种重要的医学昆虫,在生物媒介传染病的过程中起着非常重要的角色,其肠道定植着大量的细菌群落,菌群在与蚊虫的互作共生过程中,在多方面对蚊虫的生命活动起着重大的影响,本文从蚊虫肠道菌群的种群结构、影响因素以及菌群对蚊虫媒介效能的调控等方面进行综述。

  关键词: 蚊; 肠道菌群; 多样性; 媒介效能;

  Abstract: Mosquitoes are an important medical insect and play a very important role in the process of biologically vector infectious diseases. A large number of bacterial communities are colonized in their intestines. In the process of interaction and symbiosis with mosquitoes, the bacterial community is in many ways. The life activities of mosquitoes have a significant impact. This article reviews the population structure of the mosquito intestinal flora, influencing factors, and the regulation of mosquito vector efficacy by the flora.

  Keyword: Mosquitoes; Intestinal flora; Diversity; Media effectiveness;

  蚊虫与人类生活密切相关,是非常重要的医学媒介昆虫,通过叮咬人和脊椎动物,可传播登革病毒(Dengue Virus)、寨卡病毒(Zika Virus)、疟原虫(Plasmodium)等多种病原体[1,2,3,4,5],给全世界的公共卫生防疫带来巨大的挑战。肠道作为蚊虫对病原微生物的首道重要防线,定植着大量微生物群,包括浮游生物(水藻类等)、细菌与真菌等,而目前在对蚊虫肠道微生物的研究中,受到广泛关注的是细菌[6]。自2007年人类微生物组计划(HMP, 2007年NIH)启动以来,越来越多的研究表明,菌群在与宿主的互作共生过程中,在多方面与宿主的生命活动存在着密切的联系[7,8]。本文通过对蚊虫肠道菌群组成结构的多样性、影响因素,肠道菌群对蚊虫的生命活动及媒介效能的影响研究现状进行综述。
 

蚊虫肠道菌群的多样性和影响因素
 

  1、 蚊虫肠道菌群的多样性

  蚊虫在幼虫羽化为成虫前,主要孽生在积水的环境中,不同的蚊种,对孽生水质的要求各有差异,成虫其孽生环境因可飞行相比较幼虫而言变得相对复杂多变[9]。从食物获取的来源分析,幼虫以单细胞生物、有机碎屑和小型无脊椎动物为食,雄蚊则通常以花粉蜜腺为食,而成年雌蚊则以吸食脊椎动物血液作为食物的主要来源[10,11],这也为产卵提供了必要的营养,而此相对特殊的食物链也为病原生物在宿主之间进行传播提供了必要的途径[12]。绝大部分蚊虫定植在肠道的菌群主要是通过饮食从环境中获得,仅少部分是直接通过垂直传播途径获得[13,14],此观点获得多项研究数据的支持,第一,实验研究发现蚊子幼虫孵化时肠道内没有细胞外菌群;其次,对蚊虫肠道菌群的研究发现,在幼虫肠道鉴定出的大多数菌群与其水生栖息地中存在的群落高度重叠;第三,蚊虫拥有高度可变的肠道群落[6,15,16,17]。随着测序技术的快速发展,对蚊虫肠道菌群结构的研究已经由体外细菌培养转变为体外细菌培养结合宏基因组学测序技术的研究[18],该技术极大的促进了对不能体外培养的菌群调查研究。目前除罕见难以鉴别的序列外,蚊虫已鉴定的肠道细菌群落多样性与脊椎动物相比,蚊虫肠道中的细菌群落多样性相对较低(约200种)[12],但单从蚊虫的肠道细菌群落多样性与其它从环境中获得肠道菌群的代谢性昆虫相比,其肠道菌群构成还是很可观[13]。不同的蚊种,对生境的喜好各有不同,伊蚊幼虫孽生以民房周边的容器积水(缸、罐、盆、竹筒、树洞、轮胎等)为主,阿蚊幼虫则孽生在室内、畜舍、厕所积水内生栖居多,按蚊幼虫孽生以遮阴,水质清凉的稻田、沼泽、洼地积水等环境为主,而库蚊则孽生在房屋附近污水或水缸中,成虫因其能飞行,以及需要寻找合适的产卵环境,其孽生环境范围较广[10,11,19]。研究表明,在幼虫期和成虫期其肠道中,大多数已鉴定的菌群以革兰氏阴性需氧菌或兼性厌氧菌为主,主要隶属4个优势门,分别为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)[6,15,16,17,20,21,22,23],定植的常见菌株包括拟杆菌门的伊丽莎白菌(Elizabeth)、金黄杆菌(Chryseobacterium),变形菌门的假单胞菌(Pseudomonadaceae)、沙雷氏菌(Serratia)、沃尔巴克氏体菌(Wolbachia)、肠杆菌(Enterobacter)和不动杆菌(Acinetobacter),在伊蚊与按蚊的肠道中还普遍发现Asaia菌与泛菌(Pantoea)的存在[16,24,25]。研究发现,同种蚊虫的幼虫与成虫因生境不同以及生长发育的影响,多数情况下,幼虫中的细菌物种多样性始终高于成虫[6,15,17,22],而实验室饲养的蚊种与野外采集的同一蚊种相比,其肠道菌群多样性更低[15,16,20],并且野外采集的蚊种,雌蚊肠道的菌群多样性要高于雄性[24]。在对多个采样点的研究发现,同一种或不同物种的个体在同一地点和相同采集日期之间的肠道菌群组成比来自不同地点和相同采集日期的个体肠道菌群更为相似[6,16,22],但目前并没有证据证明在相同的采样区域,同种或不同种蚊种的幼虫与成虫的肠道就存在某特定的“核心”菌群[26]。大多数的研究结果不约而同的指向不同蚊种之间和蚊虫内部的细菌多样性因采集地点的不同而有较大的差异,而同一地点各蚊虫肠道可有相似的菌群结构[6,16,17,21,22,27,28,29],并且蚊虫从环境中获取的肠道菌群与其他昆虫和脊椎动物的相关研究结论相似[30],这一系列研究说明蚊虫所处的生境对肠道菌群结构的形成起着主导性作用。在特定地区,影响肠道菌群组成的次要因素还包括蚊虫进食食物的PH值、碳水化合物的含量、代谢途径等均能对肠道菌群的结构产生影响[20,31,32],肠道菌群还随着年龄的变化而发生着变化,这也许是肠道菌群跟蚊虫竞争糖源相关[33,34]。而间日疟原虫可以通过调节按蚊肠道的铁代谢来引起肠道菌群的早期抑制[34],从而引起肠道菌群的改变。

  2、 肠道菌群对蚊虫生长发育的影响

  肠道菌群在蚊虫的生长发育过程中扮演着十分重要的角色[7,8],通过不同方式给蚊虫提供必要的营养物质[35,36]。早期有研究发现,当自然水生环境中的菌群数量减少时,蚊子在幼虫时期表现出更高的死亡率或延迟到蛹期的生长[22],在对埃及伊蚊(Aedes aegypti)自虫卵培育开始,通过无害化构建无菌幼虫,在与正常养殖的对照组相比较,也发现实验组不生长,且一龄幼虫在几天后死亡,在通过人为的添加正常的菌群或者酵母(Saccharomyces)后,可以恢复其正常的生长[15,37]。有趣的是,研究人员发现只有喂食活菌才能支持埃及伊蚊的生长发育,这在其它的几种蚊种的实验中也得到证明[15,17,22],另外还发现肠道细菌对幼虫的蜕皮也是至关重要[38]。而在最近的一项研究则表明,在完全没有菌群的培养生境下,给予正常的营养物质,依旧能将埃及伊蚊从卵培养到成蚊并继续培养到下一代,无菌蚊虫发展正常,仅仅在发育的时间存在延迟[39],在给予按蚊的食物中提高细菌的丰度能加速幼虫的生长发育[31],这些证据表明肠道菌群的次级代谢产物有可能是调节蚊虫生长发育非常重要的影响因素。研究还发现苏云金杆菌(Bacillus thuringiensis)以色列亚种制剂则有抑制摇蚊生长发育的作用[40],而埃及伊蚊的肠道细菌能影响其对血粉的消化,其机制考虑是沙雷氏菌与肠杆菌通过产生溶血酶,以此增进蚊虫吸血后营养的吸收[41]。虽然到目前为止,绝大部分肠道菌群影响蚊虫生长发育的具体机制没有被深入研究鉴定,但通过这一些列的表观现象还是能说明,肠道菌群及次级产物在蚊虫的生命各个阶段起着不可或缺的作用。

  3 、肠道菌群对蚊虫免疫调控的影响

  媒介效能是蚊虫感染病原体后,将病原复制增殖并传播给其它宿主的能力[42]。肠道菌群与蚊虫宿主长期保持着寄生或共生的关系,菌群在自身的生命活动过程中,通过菌群自身及其次级产物从多途径影响着蚊虫的媒介效能,在蚊虫免疫系统的发展和功能中扮演着重要的角色[43,44]。研究表明肠道菌群通过感染蚊虫能激活其中肠免疫基因的表达[33],而按蚊被感染不同的沙雷氏菌种后,其对疟原虫感染的效能也有所变化[45],而沙雷氏菌还可以促进登革病毒、寨卡病毒、基孔肯雅病毒(Chikungunya Virus)对蚊虫的感染[46,47,48],目前研究考虑其机制为沙雷氏菌通过其分泌的多肽结合埃及伊蚊中肠表面的抗增值蛋白,以此促进蚊虫对登革病毒易感,而芳香沙雷氏菌通过分泌P40蛋白,再与蚊虫中肠细胞的线粒体上的孔蛋白相结合,从而抑制蚊虫的免疫力,促进基孔肯雅病毒的感染[46,47]。

  被变形杆菌(Proteus)感染后的埃及伊蚊,其中肠上皮细胞的多种抗菌肽基因可被激活表达,以此能增强蚊虫对病毒的免疫力[49]。更有意思的发现是色素细菌(Chromobacterium)不仅能抑制肠道内多种细菌的生长[50],还有着广泛的抗病原体活性,它不仅可显着的减少冈比亚按蚊(Anopheles gambiae)对疟原虫的感染,还能减少登革病毒对埃及伊蚊的感染,但具体的作用机制目前并没有太多的深入研究[51]。冈比亚按蚊在进食含有抗生素的血液后,其对疟原虫免疫力有所降低[36]。Moreira研究团队首次报告沃尔巴克氏体通过感染埃及伊蚊,能降低登革病毒和基孔肯雅病毒(CHIKV)感染埃及伊蚊的能力[52],而近期报道也表明,沃尔巴克氏体能显着的抑制寨卡病毒感染埃及伊蚊[53],已报道的沃尔巴克氏体对埃及伊蚊免疫调控的途径是,沃尔巴克氏体通过感染埃及伊蚊,激活蚊虫的ROS-Tall通路,以此来增强埃及伊蚊的免疫力,减低埃及伊蚊对病原体及寄生虫的易感性[54]。该菌在通过感染按蚊后,可以激活按蚊的免疫系统,也能显着抑制疟原虫卵囊的形成,达到减少疟原虫的传播[55]。沃尔巴克氏体为母系遗传[56],其在昆虫的生殖过程中所表现出的胞质不亲和性(Cytoplasmic incompatibility, CI)是目前沃尔巴克氏体运用到昆虫种群控制的基础,基于CI的蚊种节育技术已经在多地进行野外实验[57],并证明该方法可以有效的控制白纹伊蚊种群数[58]。而另外的团队通过按蚊肠道感染厚壁菌门的球形芽孢杆菌(Bacillus sphaericus),利用该菌其合成的Mtx与Bin毒力蛋白,可以高效的创伤按蚊,从而达到对按蚊种群的控制[59],达到生物控蚊防传染病的目的。而在生物灭蚊的另一个被广泛关注的是利用Xenorhabdus属与Photorhabdus属的不同菌种来实现生物灭蚊[60,61],目前已发现24个Xenorhabdus菌种与5个Photorhabdus菌种具备杀蚊虫的特性,其杀蚊途径考虑是这些菌种通过感染蚊虫后,细菌的相关基因编码低分子量蛋白质、次级毒素复合物和具有杀虫剂活性的代谢物,使蚊种患病受伤甚至致死,从而达到灭蚊,切断病原传播途径,目前多项研究已经证明了它们对灭蚊具有较强的有效性,且对环境与人类友好[62,63,64,65,66,67,68]。这一系列的研究结果为将来开发出更多用于灭蚊的化合物和生物制剂提供了研究基础。

  4、 展望

  蚊虫对传染病的传播依旧是目前全球公共卫生安全所面临的巨大挑战之一,而灭蚊仍是应对的最佳选择。然而传统的化学防蚊,其对人居环境不友好以及快速的产生耐药蚊虫,使找到新的控蚊手段显得更为迫切需要。近年来,通过对蚊虫、肠道菌群以及病原三者间互作关系深入研究成果的展现,为生物防蚊以及防媒介传染病提供了新的思路。伴随着高通量测序技术、生物信息学技术、宏基因组学等相关技术的进一步发展,极大的推动了蚊虫与肠道菌群的相关研究,并展现出肠道菌群在蚊虫免疫调节、生物媒介、种群控制、生长发育等多方面强有力的调节作用,从多方面揭示了肠道菌群对蚊虫影响的机制。为进一步阐明蚊媒介传染病的传播因素以及在生物灭蚊、防控媒介传染病的应用开拓了新方向。

  作者贡献度说明

  刘 彪:第一作者 为文章主要撰写人;

  康 迅:共同第一作者 在文献的撰写过程中协助查找参考文献,提供参考建议,帮助修改文章;

  王悦鑫:第二作者 帮助修改文章;

  吴兴勇:第三作者 帮助修改文章;

  符慧敏:第四作者 帮助修改文章;

  康 乐:共同通讯作者 作为第一作者联合培养导师,对作者在文章的撰写过程中提供富有建设性的指导建议;

  夏乾峰:通讯作者 作为第一作者联合培养导师,对作者在文章的撰写过程中提供宝贵的指导建议。

  参考文献

  [1] Hay SI, Okiro EA, Gething PW, et al. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007[J]. PLoS Med, 2010, 7(6):e1000290.
  [2] Annelies WS, Murray, Mikkel Q. Epidemiology of dengue: past, present and future prospects[J]. Clin Epidemiol, 2013, 5:299-309.
  [3] Anne, Gulland. Death toll from malaria is double the WHO estimate, study finds[J]. BMJ, 2012, 344:e895.
  [4] 张丽, 丰俊, 张少森, 等. 2018年全国疟疾疫情特征及消除工作进展[J]. 中国寄生虫学与寄生虫病杂志, 2019, 37(03):241-247.
  [5] Gardner LM, Chen N, Sarkar S. Global risk of Zika virus depends critically on vector status of Aedes albopictus[J]. Lancet Infect Dis, 2016, 16(5):522-523.
  [6] Geoffrey, Gimonneau, Majoline, et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages[J]. Infect Genet Evol, 2014, 28:715-724.
  [7] González A, Vázquez-Baeza Y, Knight R. SnapShot: the human microbiome[J]. Cell, 2014, 158(3):690-690.e1.
  [8] Vázquez-Baeza, Yoshiki, Gonzalez A, et al. Bringing the Dynamic Microbiome to Life with Animations[J]. Cell Host Microbe, 2017, 21(1):7-10.
  [9] Clements AN. The Biology of Mosquitoes, Volume 1. Development,Nutrition and Reproduction[M]. Oxfordshire: CABI Publishing, 2000.
  [10] Merritt RW, Dadd RH, Walker ED. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes[J]. Annu Rev Entomol, 1992, 37:349-376.
  [11] Foster WA. Mosquito sugar feeding and reproductive energetics[J]. Annu Rev Entomol, 1995, 40:443-474.
  [12] Strand MR. The gut microbiota of mosquitoes: Diversity and function. In Arthropod Vector: Controller of Disease Transmission, Vol 1 [M]. Elsevier, 2017.
  [13] Philipp E, Moran NA. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiolo Rev, 2013, 37(5): 699-735.
  [14] Strand, Michael R. Composition and functional roles of the gut microbiota in mosquitoes[J]. Curr Opin Insect Sci, 2018, 28:59-65.
  [15] Coon KL, Vogel KJ, Brown MR, et al. Mosquitoes rely on their gut microbiota for development[J]. Mol Ecol, 2014, 23(11):2727-2739.
  [16] Anne B, Majoline TT, Dipankar B, et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection[J]. PLoS Pathog, 2012, 8(5):e1002742
  [17] Laura, B, Dickson, et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector[J]. Sci Adv, 2017, 3(8): e1700585.
  [18] 曹乐, 宁康. 昆虫肠道的宏基因组学: 微生物大数据的新疆界[J]. 微生物学报, 2018, 58(06):964-984.
  [19] 柳支英, 陆宝麟. 医学昆虫学[M]. 北京: 科学出版社, 1990, 141-142.
  [20] Ying W, Thomas MG, Phanidhar K, et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya[J]. PloS One, 2011, 6(9): e24767.
  [21] Kamlesh KY, Ajitabh B, Sibnarayan D, et al. Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India[J]. Parasit Vectors, 2015, 8:641.
  [22] Coon KL, Brown MR, Strand MR. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats[J]. Mol Ecol, 2016, 25(22):5806-5826.
  [23] Panpim T, James AC, Amy BJ, et al. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases[J]. Ecol Evol, 2017, 8(2):1352-1368.
  [24] Karima Z, Fara NR, Vincent R, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar[J]. FEMS Microbiol Ecol, 2011, 75(3):377-389.
  [25] Niccolò, Alfano, Valentina, et al. Changes in Microbiota Across Developmental Stages of Aedes koreicus, an Invasive Mosquito Vector in Europe: Indications for Microbiota-Based Control Strategies[J]. Front Microbiol, 2019, 10:2832.
  [26] Guégan, Morgane, Zouache K, et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions[J]. Microbiome, 2018, 6(1):49.
  [27] Dagne D, Michael WH, Paul R, et al. Developmental succession of the microbiome of Culex mosquitoes[J]. BMC Microbiol, 2015, 15:140.
  [28] Villegas LEM, Campolina TB, Barnabe NR, et al. Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis[J]. PloS One, 2018, 13(1):e0190352.
  [29] Kim CH , Lampman RL, Muturi EJ. Bacterial Communities and Midgut Microbiota Associated with Mosquito Populations from Waste Tires in East-Central Illinois[J]. J Med Entomol, 2015, 52(1):63-75.
  [30] Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature, 2018, 555(7695):210-215.
  [31] Linenberg I, Christophides GK, Gendrin M. Larval diet affects mosquito development and permissiveness to Plasmodium infection[J]. Sci Rep, 2016, 6:38230.
  [32] Dutra NR, Guilherme VM, Moretti DM, et al. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan[J]. PLoS Negl Trop Dis, 2016, 10(10):e0005034.
  [33] Dong Y, Manfredini F, Dimopoulos G, et al. Implication of the mosquito midgut microbiota in the defense against malaria parasites[J]. PLoS Pathog, 2009, 5(5):e1000423.
  [34] Punita S, Jyoti R, Charu C, et al. Altered Gut Microbiota and Immunity Defines Plasmodium vivax Survival in Anopheles stephensi[J]. Front Immunol, 2020, 11:609.
  [35] Ricci I, Damiani C, Capone A, et al. Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives[J]. Curr Opin Microbiol, 2012, 15(3):278-284.
  [36] Gendrin M, Rodgers FH, Yerbanga, Rakiswendé S, et al. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria[J]. Nat Commun, 2015, 6:5921.
  [37] Leonardo MD, Alessio CD, Perotti MA, et al. Culex pipiens Development Is Greatly Influenced by Native Bacteria and Exogenous Yeast[J]. PloS One, 2016, 11(4):e0153133.
  [38] Coon K L, Valzania L, Mckinney DA, et al. Bacteria-mediated hypoxia functions as a signal for mosquito development[J]. Proc Natl Acad Sci U S A, 2017, 114(27):E5362-E5369.
  [39] Correa MA, Matusovsky B, Brackney DE, et al. Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development[J]. Nat Commun, 2018, 9(1):4464.
  [40] 雷萍, 刘丽君, 张金松, 等. 供水系统摇蚊污染的微生物控制实验研究[J]. 微生物学通报, 2007, (02):296-299.
  [41] Analiz DOG, Desiely SG, Ad?o VS, et al. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.)[J]. Parasit Vectors, 2011, 4:105.
  [42] 张浩, 王春梅, 周元平, 等. 伊蚊传播登革病毒媒介效能的研究进展[J]. 热带医学杂志, 2012, 12(09):1160-1163+1170.
  [43] Belkaid Y, Hand T. Role of the microbiota in immunity and inflammation[J]. Cell, 2014, 157(1):121-141.
  [44] Wlodarska M , Kostic A , Xavier R. An integrative view of microbiome-host interactions in inflammatory bowel diseases[J]. Cell Host Microbe, 2015, 17(5):577-591.
  [45] Bando H, Okado K, Guelbeogo WM, et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity[J]. Sci Rep, 2013, 3:1641.
  [46] Apte-Deshpande AD, Paingankar MS, Gokhale MD, et al. Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus[J]. Indian J Med Res, 2014, 139(5): 762-768.
  [47] Anjali AD, Mandar P, Gokhale MD, et al. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus[J]. PloS One, 2012, 7(7):e40401.
  [48] Wu P, Sun P , Nie K, et al. A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses[J]. Cell Host Microbe, 2019, 25(1):101-112.e5.
  [49] Ramirez JL, Souza-Neto J,Torres CR, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence[J]. PLoS Negl Trop Dis, 2012, 6(3):e1561.
  [50] Ramirez JL, Short SM, Bahia AC, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities[J]. PLoS Pathog, 2014, 10(10):e1004398.
  [51] Saraiva RG, Jingru F, Seokyoung K, et al. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein[J]. PLoS Negl Trop Dis, 2018, 12(4):e0006443.
  [52] Luciano AM, I?aki I, Jason AJ, A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium[J]. Cell, 2009, 139(7):1268-1278.
  [53] Dutra HL, Rocha MN, Dias FB, et al. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes[J]. Cell Host Microbe, 2016, 19(6):771-774.
  [54] Pan X, Zhou G, Wu J, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti[J]. Proc Natl Acad Sci U S A, 2012, 109(1):E23-31.
  [55] Hughes GL, Koga R, Xue P, et al. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae[J]. PLoS Pathog, 2011, 7(5):e1002043.
  [56] Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology[J]. Nat Rev Mic, 2008, 6(10):741-751.
  [57] Zabalou S, Riegler M, Theodorakopoulou M, et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control[J]. Proc Natl Acad Sci U S A, 2004, 101(42):15042-15045.
  [58] Zheng X, Zhang D, Li Y, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes[J]. Nature, 2019, 572(7767):56-61.
  [59] Berry C. The bacterium, Lysinibacillus sphaericus, as an insect pathogen[J]. J Invertebr Pathol, 2012, 109(1):1-10.
  [60] Veesenmeyer JL,Andersen AW, Lu X, et al. NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes[J]. Mol Microbiol, 2014, 93(5):1026-1042.
  [61] Ahantarig A, Chantawat N, Waterfield NR, et al. PirAB toxin from Photorhabdus asymbiotica as a larvicide against dengue vectors[J]. Appl Environ Microbiol, 2009, 75(13):4627-4629.
  [62] Joo LRDS, Fernanda US, Eugênio SC, et al. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae)[J]. J Econ Entomol, 2017, 110(2):378-385.
  [63] Yooyangket T, Muangpat P, Polseela R, et al. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus[J]. PloS One, 2018, 13(4):e0195681.
  [64] Thanwisai A, Tandhavanant S, Saiprom N, et al. Diversity of Xenorhabdus and Photorhabdus spp. and their symbiotic entomopathogenic nematodes from Thailand[J]. PloS One, 2012, 7(9):e43835.
  [65] Tailliez P, Pagès S, Ginibre N, et al. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species[J]. Int J Syst Evol Microbiol, 2006, 56(Pt 12):2805-2818.
  [66] Glaeser SP, Tobias NJ, Thanwisai A, et al. Photorhabdus luminescens subsp namnaonensis subsp nov, isolated from Heterorhabditis baujardi nematodes[J]. Int J Syst Evol Microbiol, 2017, 67(4): 1046-1051.
  [67] Muangpat P, Yooyangket T, Fukruksa C, et al. Screening of the Antimicrobial Activity against Drug Resistant Bacteria of Photorhabdus and Xenorhabdus Associated with Entomopathogenic Nematodes from Mae Wong National Park, Thailand[J]. Front Microbiol, 2017, 8:1142.
  [68] Silva WJD , Harry LP, Heermann R , et al. The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review[J]. Parasit Vectors, 2020, 13(1):376.

重要提示:转载本站信息须注明来源:原创论文网,具体权责及声明请参阅网站声明。
阅读提示:请自行判断信息的真实性及观点的正误,本站概不负责。
我们的服务
联系我们
相关文章